LAMINAR BOUNDARY LAYER STABILITY ON MEMBRANE
TYPE DEFORMABLE SURFTACES

V. V. Skripachev

In connection with the successful experiments of Kramer [1. 2] on models sheathed by
flexible coverings, attempts have been made to explain theoretically the effect of boundary
deformation on the position of the point of stability loss in the boundary layer. Korotkin
[3] examined the stability of a plane laminar boundary layer on an elastic surface under
the assumption of a linear connection between the pressure perturbation and the normal
deformation of the surface, Benjamin [4] and Landahl [5] investigated the stability of the
laminar boundary layer on a membrane type surface under the assumption that the physi-
cal characteristics of the surface depend on the perturbing flow wavelength., In the fol-
lowing we examine stability of Blasius flow on a membrane type surface whose physical
characteristics are constant along the length.

We shall assume that in the absence of perturbations the plate surface coincides with the half-plane
xZ0,y=0 (Fig. 1). We suppose that some perturbations arise in the stream at a given moment of time
and shall study the stability of the stream with respect to these perturbations.

Let U, V(V < TU) be the Blasius flow velocity components along the x and y axes respectively, p is
pressure, v is the kinematic viscosity, and p is the density of the fluid. The perturbation velocities u’, v’,
and the pressure perturbation p' will be assumed small in the sense that terms which are quadratic in the
perturbations can be neglected, We introduce the perturbing flow stream function ¥* in the form

Yy = ¢ () exp li a(z—ct)] (1)

assuming that the real part of (1) is taken. The wave number o is a real quantity related with the perturb-
ing flow wavelength by the relation « =27/A. The phase velocity c=cp+icj is a complex quantity. The sign
of the imaginary part c¢j shows whether the perturbation increases (¢j >0) or decays (¢j<0). In (1) and
hereafter dimensionless quantities are used. We take as the velocity scale the velocity Ug at the outer
edge of the boundary layer, and we take as the length scale the boundary layer thickness
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Of primary interest is the neutral curve cij=0 separating the region of growing perturbations from the
region of decaying perturbations. The stability loss Reynolds number is determined from the form of this

curve. The neutral stability curve is constructed on the basis of the solution of the Orr—Sommerfeld equa-
tion for the amplitude ¢ of the perturbing flow stream function [6]
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Fig. 2

The boundary conditions for (2) express the conditions
p L for decay of the perturbations at infinity and the no-slip con-
ditions. The conditions at infinity have the form [6]

¢ F+oap=0, |¢|< (3)

y a The no-slip conditions express equality of the velocity
\ of the surface element and the fluid particle adjacent to the

‘ surface (Fig. 1).
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Substituting (5) into (4), expanding the right sides of the
latter into a Taylor series and taking into account the small-
ness of the deformations and the velocity V. we obtain

i

U P
b= [—“f'ﬂ o (0)} = 2 (6)
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For the further calculations it is convenient to introduce the normal Y, and tangential X; stream com-
pliances with respect to a travelling wave, The normal (tangential) compliance is defined except for sign
by the ratio of the normal (tangential) velocity to the pressure perturbation p'=p, exp [iz(x—ct)]. i.c..
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which can be written to within small quantities of first order as

_ la@ (0) _ 1 QO 77e '
vo =220, Xo= o[22 00 0+ (0)] ™)

The pressure perturbation amplitude py is found from the linearized viscous fluid equations of mo-
tion in projections on the x and y axes, respectively:

Pr= 7z [0 (0) — ¢’ (0)] + cg’ (0) + U’ (0) 9 (0) (8

or

<«

p=— [% (@ — ofp) — (U — C)‘P] dy ©

0

The identity of (8) and (9) follows from (2).

We introduce similarly the tangential Y,, and normal Y,; compliances of the deformable surface with
respect to a travelling wave

1 0
Y12=7_E
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which to within small quantities of first order is written as

o __ fucky _ ixem
Yio = o’ Y= o (10)
The equalities
Yo=Y Xy =Yy (11)

express the boundary conditions at the deformable surface,

Calculations show that the tangential compliance has a weak influence on the position of the stability
loss point and can be considered equal to zero,

To find the normal compliance Yy, depending on 74, we examine the motion of a membrane element
(Fig. 2)

on ' g
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Here mx is the membrane mass per unit area, Tx is the surface tension per unit width of the mem-
brane, kx is the stiffness coefficient. Asterisks denote dimensionless quantities,

Considering (5), we find from (12) the ratio n,/p; and substitute it into (10) to obtain

iac

Yiu=-— ma® (¢ — 6% — cidjm) (13)
where
2 T k
eo® = Com + %7 Cgmzﬁq (’302:7;:150»21?2
The approximate solution of (2) can be written as
g=0 + Ag, (14)
In this equation ® is the "inviscid" solution, satisfying
(U—¢) (@ —a?D) —U" D=0 (15)
and ¢, is the approximate "viscous" solution of (2), satisfying [6]
4 . d ¥—Y; -t
Zrizi — 1 dnqj;I =0, m=—", o= (lU)" (16)

Here y, is the value of y for which U=c.

The solutions ® and ¢4 satisfy the boundary conditions (3). The boundary conditions (11) and the con-
ditions for nontriviality of the solution lead to the characteristic equation relating the quantities @, ¢, and
R with the parameters of the deformable surface, Before writing this equation, we shall simplify the ex-
pression for the pressure amplitude p; in (11), neglecting terms which are small in magnitude, In accord-
ance with (8) and (14), we can write

Oy By " 0) — e (O ,
Py = [0 (O)ia};ztb (0) + 4 Ps (O)iﬂ? %()'I‘C(P (0) + U’ (0) ¢ (0) an

Since the inviscid solution changes slowly, we can neglect the first term of the right side of (17). In
the Blasius flow case this term equals zero identically, which follows from (15) after differentiating with
respect to y. In accordance with (6) and (10), the sum of the third and fourth terms of the right side of (17)
equals c¢Yy,py and can also be neglected. For further simplification of (17) we findp4'""(0) from (16) by in-
tegrating term-by-term with respect to y

e . 102 0)
93" (0) = — iRy U9y’ O) |1+ 557 | (18)
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It follows from (18) that | ,''"(0) [> |¢4'(0)|. Therefore, considering also that Ug'~U'(0), ycUe'~c
and using (7) and (11), we finally obtain

P (0) = U" (D (0) + ¢@" (0) (19)

To within terms R'i/ 3 an identical expression is obtained by transforming (9). The arguments pre-
sented above refute the statement of Landahl [5] that the linearized equation of motion in the projection on
the y axis provides a more exact expression for the pressure perturbation than the linearized equation of
motion in the projection on the x axis.

Using the resulting expression for p;, we can write the characteristic equation in the form

{Yu [U7 O (0) + @ (O)] — ia® (0)} [T” (0)@s (0) -+ c@s” (0)]

= —iap, (0) [T 0)D (0) + " (0)] (20)
Let us simplify (20). We introduce the notations
o AR\ oo [1 4 OO0 (21)
s=c(ipm) s wrw=[1+ T
UOe® _ P (g) =
T ) F(z), F*(@)=—7—% @)

Here F(z) is the Tietjens function, tabulated in [6]. After a simple transformation, (20) is written in
the notations (21) as

U’ () Yu

F*(z) =u+iv 4+ — (22)

The function ®, through which u+iv is expressed, is found from the solution of (15). Representing
this solution in the form of a series in powers of «? and using only the principal terms, we obtain [6]

u—}—w:cU'(O)[—&—zl—i_—_—é)T—}—m], Q)Z'C—U.,i-(T)—[—K(C)

dy . 1 Uc”lnc Uc"ni (23)
T—or — w0y T wr T wyE T

[

K (c)=

We substitute the value of Yy from (13) into (22) and separate the real and imaginary parts. Then
we find

mU’ (0) (co?fc — ¢} . U0d
@+ ma® (ootfe — o’ F#=v—7 [@® L mPa® (og¥c — ¢)F] (24)

b —
Fr =y —

where Fy* and F;* are respectively the real and imaginary parts of the function F* (z).

We note that sometimes the connection between the pressure and deformation is specified in the
form [3]

n = p'K,e*
i.e., in accordance with (10) we take
Yy, = iacK,e®

and do not consider the concrete form of the deformable surface, In this case the coefficient K; and the
phase shift # between the pressure and deformation are considered the characteristic constants of the de-
formable surface. It is not difficult to see from (13) that for the deformable surface model adopted here
K, = {lma? (c? — e®)? + dicta?)-,

dea L
ma? (¢ — ¢o?)
i.e., K; and 8 depend on the physical parameters of the perturbation wave and the deformable surface
parameters,

g0 = —

On the basis of the above discussion the neutral stability curve for fixed deformable surface parame-
ters can be constructed in the following sequence. For each z we find from the tables Fy* and F;*, then
(24) and (21) are used to find o and ¢ and (21) is used to calculate the corresponding value of the numier
R. The stability loss number R corresponds to z=3.21, Fij* =0.,58, Fp* =1.49,
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The results of calculations of the stability loss numbers R are shown in Fig, 3. Curve 1 represents
the dependence of f =R/R, on the mass parameter Xm:km/kmi for Cy,, =0.75, kyy=4.56 - 107%, d=0.1,
kyy1=1.8- 10% The number R, corresponds to the number R for kpy, =K1, which differs very little from
the number R for a rigid surface, Curve 2 shows 8 as a function of Mw:ka)/kwi for ny =0.4, Copm =0.75,
d=0.1, ky; =7.4-10"%, We note that in these calculations the values of Cypy and d were taken more or less
arbitrarily,

LITERATURE CITED

1. M. O. Kramer, "Boundary layer stabilization by distributed damping,” J. Amer. Soc. Naval Engrs.,
vol. 72, no. 1, 1960.

2. M. O. Kramer, "Boundary layer stabilization by distributed damping," Naval Engrs. J., vol. 74, no.
2, 1962,

3. A. 1. Korotkin, "Stability of laminar boundary layer in incompressible fluid on an elastic surface,”
Izv. AN SSSR, MZhG [Fluid Dynamics], vol. 3, no. 3, 1966,

4, T. B. Benjamin, "Effects of a flexible boundary on hydrodynamic stability," J. Fluid Mech., vol. 9,
pt. 4, 1960,

5, M. T. Landahl, "On the stability of a laminar incompressible boundary layer over a flexible surface,
J. Fluid Mech., vol. 13, pt. 4, 1962.

6. C.C. Lin, Hydrodynamic Stability [Russian translation], Izd-vo inostr, lit., Moscow, 1958,

890



